


 $\theta$  = Angle of Rotation

#### **Rotation Formula**

$$x1 = x \times \cos(\theta) - y \times \sin(\theta)$$
  
$$y1 = x \times \sin(\theta) + y \times \cos(\theta)$$

In the example to the right the shape is at coordinates (1,4). Lets find the coordinates if we rotated the shape 60°.



1.  $x1 = 1 \times \cos(60) - 4 \times \sin(60)$ 

 $y1 = 1 \times \sin(60) + 4 \times \cos(60)$ 

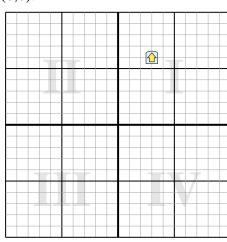
2. 
$$x1 = 1 \times 0.5 - 4 \times 0.87$$
  
 $y1 = 1 \times 0.87 + 4 \times 0.5$ 

3. 
$$x1 = 0.5 - 3.48$$

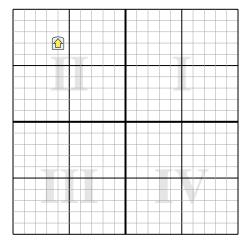
$$y1 = 0.87 + 2$$

1. 
$$x1 = -2.98$$
  
 $y1 = 2.87$ 

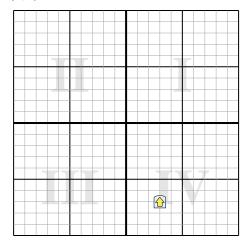
**Answers** 


1. \_\_\_\_\_

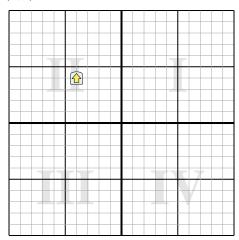
2.


3. \_\_\_\_\_

4. \_\_\_\_\_


1) Rotate the shape  $231^{\circ}$  around the point (0,0).



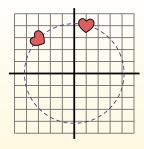

2) Rotate the shape  $-205^{\circ}$  around the point (0,0).



3) Rotate the shape  $-134^{\circ}$  around the point (0,0).



4) Rotate the shape  $-224^{\circ}$  around the point (0,0).




 $\theta$  = Angle of Rotation

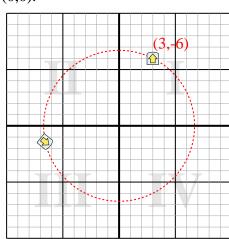
## **Rotation Formula**

$$x1 = x \times \cos(\theta) - y \times \sin(\theta)$$
  
$$y1 = x \times \sin(\theta) + y \times \cos(\theta)$$

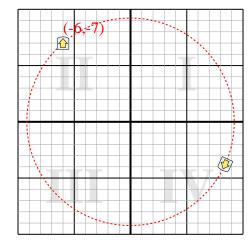
In the example to the right the shape is at coordinates (1,4). Lets find the coordinates if we rotated the shape 60°.



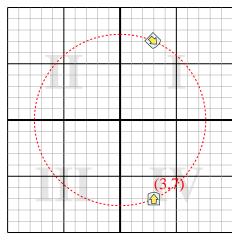
1.  $x1 = 1 \times \cos(60) - 4 \times \sin(60)$  $y1 = 1 \times \sin(60) + 4 \times \cos(60)$ 


Name:

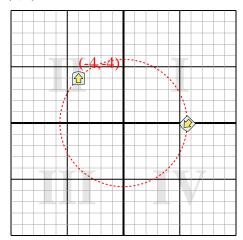
- 2.  $x1 = 1 \times 0.5 4 \times 0.87$  $y1 = 1 \times 0.87 + 4 \times 0.5$
- 3. x1 = 0.5 3.48y1 = 0.87 + 2
- 4. x1 = -2.98y1 = 2.87
- 5. Looking at shape, we can see that rotated 60° it is at (-2.98, 2.87).


# **Answers**

- 1. **(-6.6,-1.4)**
- 2. **(8.4,-3.8)**
- **(3,7)**
- 4. **(5.7,-0.1)**


1) Rotate the shape 231° around the point (0,0).




2) Rotate the shape  $-205^{\circ}$  around the point (0,0).

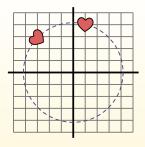


3) Rotate the shape  $-134^{\circ}$  around the point (0,0).



4) Rotate the shape  $-224^{\circ}$  around the point (0,0).






 $\theta$  = Angle of Rotation

## **Rotation Formula**

$$x1 = x \times \cos(\theta) - y \times \sin(\theta)$$
  
$$y1 = x \times \sin(\theta) + y \times \cos(\theta)$$

In the example to the right the shape is at coordinates (1,4). Lets find the coordinates if we rotated the shape 60°.



1.  $x1 = 1 \times \cos(60) - 4 \times \sin(60)$ 

$$y1 = 1 \times \sin(60) + 4 \times \cos(60)$$

2. 
$$x1 = 1 \times 0.5 - 4 \times 0.87$$
  
 $y1 = 1 \times 0.87 + 4 \times 0.5$ 

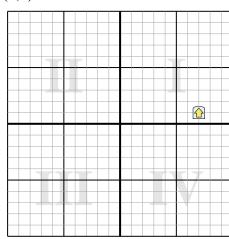
3. 
$$x1 = 0.5 - 3.48$$

$$y1 = 0.87 + 2$$

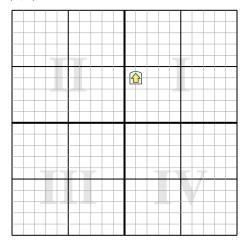
1. 
$$x1 = -2.98$$
  
 $y1 = 2.87$ 

5. Looking at shape, we can see that rotated 
$$60^{\circ}$$
 it is at (-2.98, 2.87).

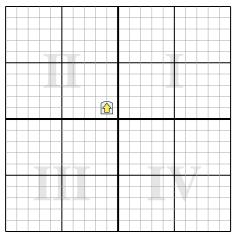



1. \_\_\_\_\_

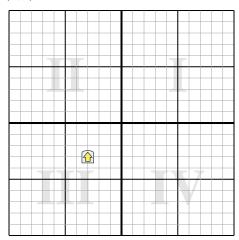
2


3. \_\_\_\_\_

4. \_\_\_\_\_


1) Rotate the shape  $76^{\circ}$  around the point (0,0).



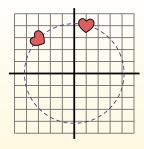

2) Rotate the shape  $192^{\circ}$  around the point (0,0).



3) Rotate the shape 290° around the point (0,0).



4) Rotate the shape  $-62^{\circ}$  around the point (0,0).




 $\theta$  = Angle of Rotation

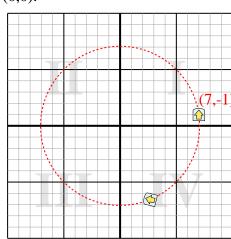
## **Rotation Formula**

$$x1 = x \times \cos(\theta) - y \times \sin(\theta)$$
  
$$y1 = x \times \sin(\theta) + y \times \cos(\theta)$$

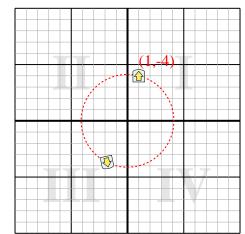
In the example to the right the shape is at coordinates (1,4). Lets find the coordinates if we rotated the shape 60°.



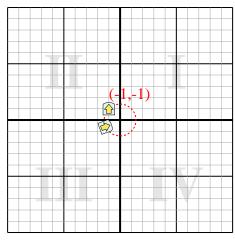
1.  $x1 = 1 \times \cos(60) - 4 \times \sin(60)$  $y1 = 1 \times \sin(60) + 4 \times \cos(60)$ 


Name:

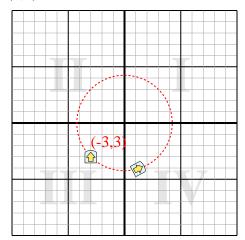
- 2.  $x1 = 1 \times 0.5 4 \times 0.87$  $y1 = 1 \times 0.87 + 4 \times 0.5$
- 3. x1 = 0.5 3.48y1 = 0.87 + 2
- 4. x1 = -2.98y1 = 2.87
- 5. Looking at shape, we can see that rotated  $60^{\circ}$  it is at (-2.98, 2.87).


**Answers** 

- 1. **(2.7,-6.6)**
- 2. **(-1.8,-3.7)**
- (-1.3,-0.6)
- 4. **(1.2,-4.1)**


1) Rotate the shape  $76^{\circ}$  around the point (0,0).




2) Rotate the shape  $192^{\circ}$  around the point (0,0).

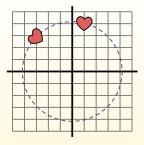


3) Rotate the shape 290° around the point (0,0).



4) Rotate the shape  $-62^{\circ}$  around the point (0,0).






 $\theta$  = Angle of Rotation

#### **Rotation Formula**

$$x1 = x \times \cos(\theta) - y \times \sin(\theta)$$
  
$$y1 = x \times \sin(\theta) + y \times \cos(\theta)$$

In the example to the right the shape is at coordinates (1,4). Lets find the coordinates if we rotated the shape 60°.

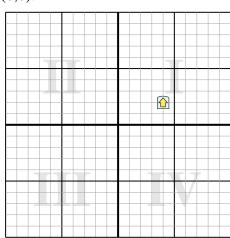


1.  $x1 = 1 \times \cos(60) - 4 \times \sin(60)$ 

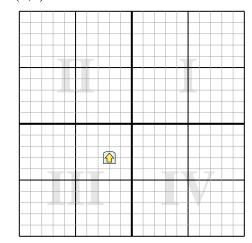
$$y1 = 1 \times \sin(60) + 4 \times \cos(60)$$

2. 
$$x1 = 1 \times 0.5 - 4 \times 0.87$$
  
 $y1 = 1 \times 0.87 + 4 \times 0.5$ 

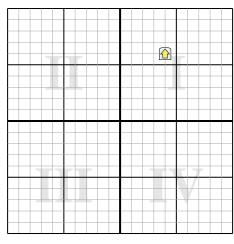
3. 
$$x1 = 0.5 - 3.48$$


$$y1 = 0.3 - 3.48$$
  
 $y1 = 0.87 + 2$ 

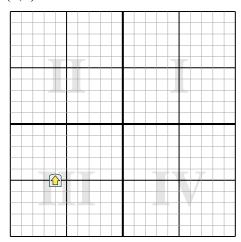
1. 
$$x1 = -2.98$$
  
 $y1 = 2.87$ 


**Answers** 

- 1. \_\_\_\_\_
- 2.
- 3. \_\_\_\_\_
- 4. \_\_\_\_\_


1) Rotate the shape  $-230^{\circ}$  around the point (0,0).

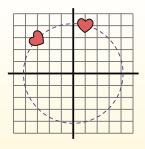



2) Rotate the shape  $149^{\circ}$  around the point (0,0).



3) Rotate the shape  $-184^{\circ}$  around the point (0,0).




4) Rotate the shape  $216^{\circ}$  around the point (0,0).



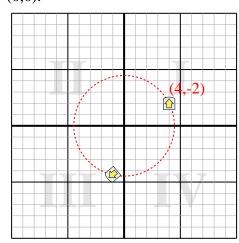
## **Rotation Formula**

$$x1 = x \times \cos(\theta) - y \times \sin(\theta)$$
  
$$y1 = x \times \sin(\theta) + y \times \cos(\theta)$$

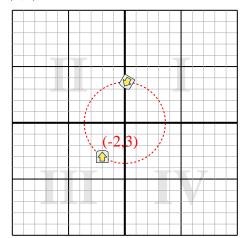
In the example to the right the shape is at coordinates (1,4). Lets find the coordinates if we rotated the shape 60°.



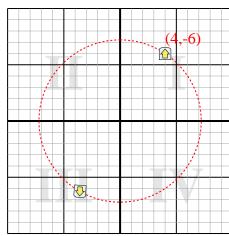
1.  $x1 = 1 \times \cos(60) - 4 \times \sin(60)$  $y1 = 1 \times \sin(60) + 4 \times \cos(60)$ 


Name:

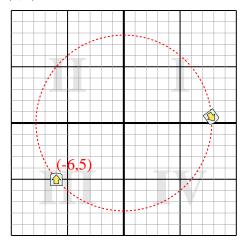
- 2.  $x1 = 1 \times 0.5 4 \times 0.87$  $y1 = 1 \times 0.87 + 4 \times 0.5$
- 3. x1 = 0.5 3.48y1 = 0.87 + 2
- 4. x1 = -2.98y1 = 2.87
- 5. Looking at shape, we can see that rotated  $60^{\circ}$  it is at (-2.98, 2.87).


# **Answers**

- 1. **(-1,-4.3)**
- 2. **(0.2,3.6)**
- 3. **(-3.6,-6.3)**
- 4. **(7.8,0.5)**


1) Rotate the shape  $-230^{\circ}$  around the point (0,0).




2) Rotate the shape  $149^{\circ}$  around the point (0,0).

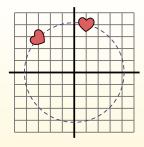


3) Rotate the shape  $-184^{\circ}$  around the point (0,0).



4) Rotate the shape  $216^{\circ}$  around the point (0,0).






 $\theta$  = Angle of Rotation

## **Rotation Formula**

$$x1 = x \times \cos(\theta) - y \times \sin(\theta)$$
  
$$y1 = x \times \sin(\theta) + y \times \cos(\theta)$$

In the example to the right the shape is at coordinates (1,4). Lets find the coordinates if we rotated the shape 60°.



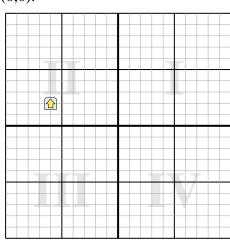
1.  $x1 = 1 \times \cos(60) - 4 \times \sin(60)$ 

$$y1 = 1 \times \sin(60) + 4 \times \cos(60)$$

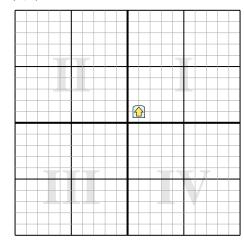
2. 
$$x1 = 1 \times 0.5 - 4 \times 0.87$$
  
 $y1 = 1 \times 0.87 + 4 \times 0.5$ 

3. 
$$x1 = 0.5 - 3.48$$

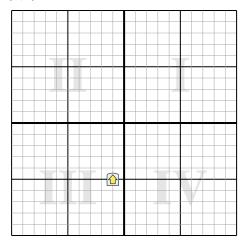
$$y1 = 0.3 - 3.48$$
  
 $y1 = 0.87 + 2$ 


$$x1 = -2.98$$

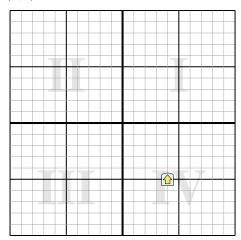
4. 
$$x_1 = -2.98$$
  
 $y_1 = 2.87$ 


5. Looking at shape, we can see that rotated  $60^{\circ}$  it is at (-2.98, 2.87).




Rotate the shape 203° around the point (0,0).




Rotate the shape -120° around the point (0,0).

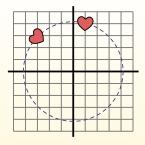


Rotate the shape 183° around the point (0,0).



Rotate the shape -35° around the point (0,0).



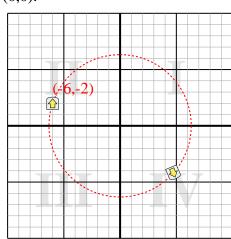

Math

 $\theta$  = Angle of Rotation

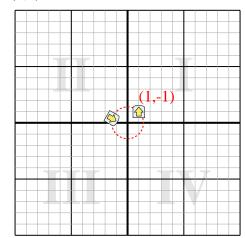
#### **Rotation Formula**

$$x1 = x \times \cos(\theta) - y \times \sin(\theta)$$
  
$$y1 = x \times \sin(\theta) + y \times \cos(\theta)$$

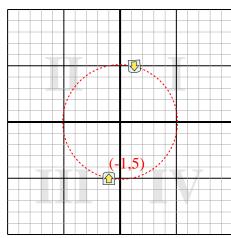
In the example to the right the shape is at coordinates (1,4). Lets find the coordinates if we rotated the shape 60°.



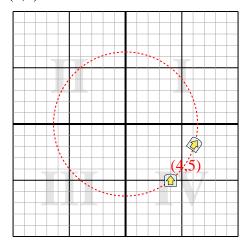

- 1.  $x1 = 1 \times \cos(60) 4 \times \sin(60)$  $y1 = 1 \times \sin(60) + 4 \times \cos(60)$
- 2.  $x1 = 1 \times 0.5 - 4 \times 0.87$  $y1 = 1 \times 0.87 + 4 \times 0.5$
- 3. x1 = 0.5 - 3.48y1 = 0.87 + 2
- x1 = -2.98y1 = 2.87
- 5. Looking at shape, we can see that rotated  $60^{\circ}$  it is at (-2.98, 2.87).


**Answers** 

- (4.7, -4.2)


Rotate the shape 203° around the point (0,0).




Rotate the shape -120° around the point (0,0).

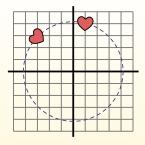


Rotate the shape 183° around the point (0,0).



Rotate the shape -35° around the point (0,0).






 $\theta$  = Angle of Rotation

## **Rotation Formula**

$$x1 = x \times \cos(\theta) - y \times \sin(\theta)$$
  
$$y1 = x \times \sin(\theta) + y \times \cos(\theta)$$

In the example to the right the shape is at coordinates (1,4). Lets find the coordinates if we rotated the shape 60°.



1.  $x1 = 1 \times \cos(60) - 4 \times \sin(60)$ 

 $y1 = 1 \times \sin(60) + 4 \times \cos(60)$ 

2. 
$$x1 = 1 \times 0.5 - 4 \times 0.87$$
  
 $y1 = 1 \times 0.87 + 4 \times 0.5$ 

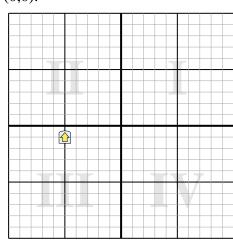
3. 
$$x1 = 0.5 - 3.48$$

$$y1 = 0.87 + 2$$

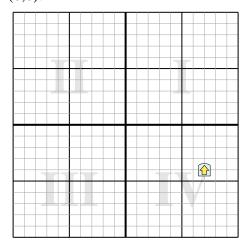
4. 
$$x1 = -2.98$$
  
 $y1 = 2.87$ 

**5.** Looking at shape, we can see that rotated 60° it is at (-2.98, 2.87).

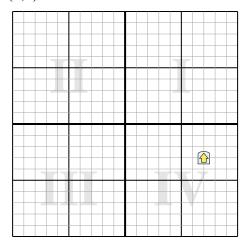



1. \_\_\_\_\_

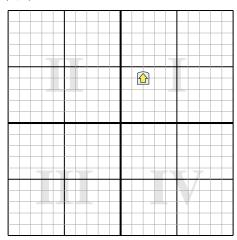
2


3. \_\_\_\_\_

4. \_\_\_\_\_


1) Rotate the shape  $-154^{\circ}$  around the point (0,0).



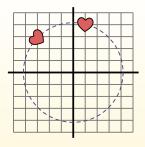

2) Rotate the shape  $182^{\circ}$  around the point (0,0).



3) Rotate the shape  $204^{\circ}$  around the point (0,0).



4) Rotate the shape  $-127^{\circ}$  around the point (0,0).




 $\theta$  = Angle of Rotation

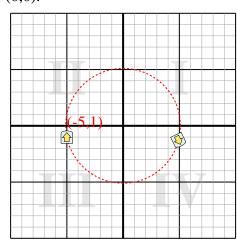
## **Rotation Formula**

$$x1 = x \times \cos(\theta) - y \times \sin(\theta)$$
  
$$y1 = x \times \sin(\theta) + y \times \cos(\theta)$$

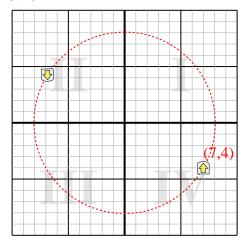
In the example to the right the shape is at coordinates (1,4). Lets find the coordinates if we rotated the shape 60°.



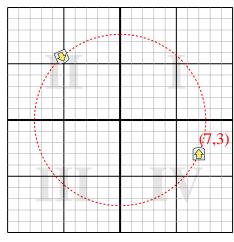
1.  $x1 = 1 \times \cos(60) - 4 \times \sin(60)$  $y1 = 1 \times \sin(60) + 4 \times \cos(60)$ 


Name:

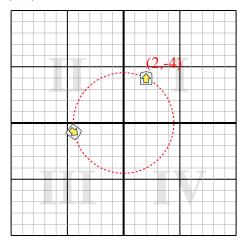
- 2.  $x1 = 1 \times 0.5 4 \times 0.87$  $y1 = 1 \times 0.87 + 4 \times 0.5$
- 3. x1 = 0.5 3.48y1 = 0.87 + 2
- 4. x1 = -2.98y1 = 2.87
- 5. Looking at shape, we can see that rotated 60° it is at (-2.98, 2.87).


# **Answers**

- 1. **(4.9,-1.3)**
- 2. **(-6.9,4.2)**
- 3. **(-5.2,5.6)**
- 4. **(-4.4,-0.8)**


1) Rotate the shape  $-154^{\circ}$  around the point (0,0).




2) Rotate the shape  $182^{\circ}$  around the point (0,0).

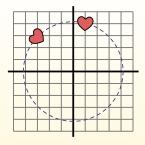


3) Rotate the shape  $204^{\circ}$  around the point (0,0).



4) Rotate the shape  $-127^{\circ}$  around the point (0,0).






 $\theta$  = Angle of Rotation

#### **Rotation Formula**

$$x1 = x \times \cos(\theta) - y \times \sin(\theta)$$
  
$$y1 = x \times \sin(\theta) + y \times \cos(\theta)$$

In the example to the right the shape is at coordinates (1,4). Lets find the coordinates if we rotated the shape 60°.



1.  $x1 = 1 \times \cos(60) - 4 \times \sin(60)$ 

 $y1 = 1 \times \sin(60) + 4 \times \cos(60)$ 

2. 
$$x1 = 1 \times 0.5 - 4 \times 0.87$$
  
 $y1 = 1 \times 0.87 + 4 \times 0.5$ 

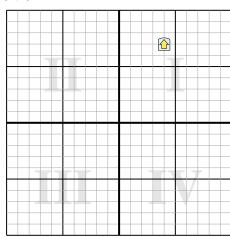
3. 
$$x1 = 0.5 - 3.48$$

$$y1 = 0.87 + 2$$

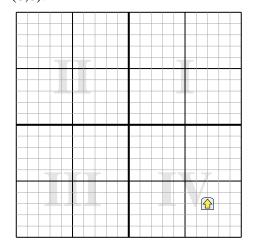
1. 
$$x1 = -2.98$$
  
 $y1 = 2.87$ 

5. Looking at shape, we can see that rotated  $60^{\circ}$  it is at (-2.98, 2.87).

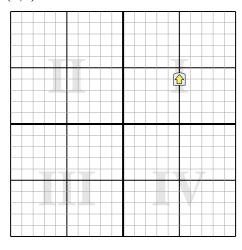



1. \_\_\_\_\_

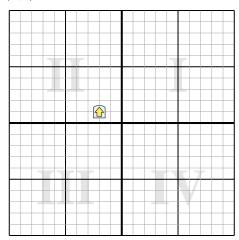
2


3. \_\_\_\_\_

4. \_\_\_\_\_


1) Rotate the shape  $99^{\circ}$  around the point (0,0).



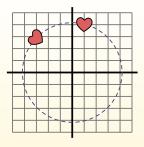

2) Rotate the shape  $-40^{\circ}$  around the point (0,0).



3) Rotate the shape  $-292^{\circ}$  around the point (0,0).



4) Rotate the shape  $45^{\circ}$  around the point (0,0).




 $\theta$  = Angle of Rotation

#### **Rotation Formula**

$$x1 = x \times \cos(\theta) - y \times \sin(\theta)$$
  
$$y1 = x \times \sin(\theta) + y \times \cos(\theta)$$

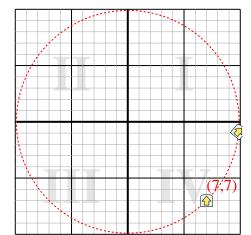
In the example to the right the shape is at coordinates (1,4). Lets find the coordinates if we rotated the shape 60°.



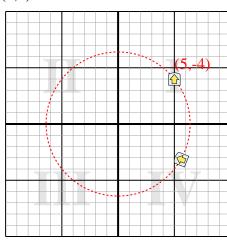
1.  $x1 = 1 \times \cos(60) - 4 \times \sin(60)$  $y1 = 1 \times \sin(60) + 4 \times \cos(60)$ 

Name:

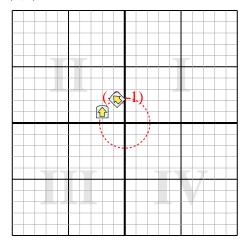
- 2.  $x1 = 1 \times 0.5 4 \times 0.87$  $y1 = 1 \times 0.87 + 4 \times 0.5$
- 3. x1 = 0.5 3.48y1 = 0.87 + 2
- 4. x1 = -2.98y1 = 2.87
- 5. Looking at shape, we can see that rotated  $60^{\circ}$  it is at (-2.98, 2.87).


**Answers** 

- 1. **(6.3,-5)**
- <sub>2</sub> (9.9.-0.9)
  - (5.6,-3.1)
- 4. **(-0.7,2.1)**


1) Rotate the shape  $99^{\circ}$  around the point (0,0).




2) Rotate the shape  $-40^{\circ}$  around the point (0,0).

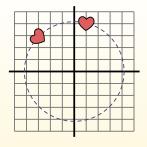


Rotate the shape  $-292^{\circ}$  around the point (0,0).



4) Rotate the shape  $45^{\circ}$  around the point (0,0).






 $\theta$  = Angle of Rotation

#### **Rotation Formula**

$$x1 = x \times \cos(\theta) - y \times \sin(\theta)$$
  
$$y1 = x \times \sin(\theta) + y \times \cos(\theta)$$

In the example to the right the shape is at coordinates (1,4). Lets find the coordinates if we rotated the shape 60°.



1.  $x1 = 1 \times \cos(60) - 4 \times \sin(60)$ 

$$y1 = 1 \times \sin(60) + 4 \times \cos(60)$$

2. 
$$x1 = 1 \times 0.5 - 4 \times 0.87$$
  
 $y1 = 1 \times 0.87 + 4 \times 0.5$ 

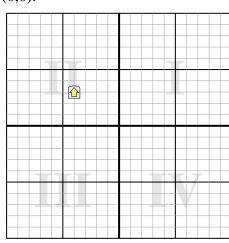
3. 
$$x1 = 0.5 - 3.48$$

$$y1 = 0.3 - 3.48$$
  
 $y1 = 0.87 + 2$ 

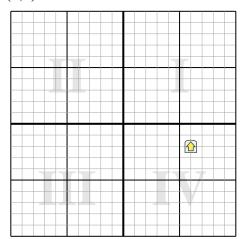
4. 
$$x1 = -2.98$$
  
 $y1 = 2.87$ 

5. Looking at shape, we can see that rotated 
$$60^{\circ}$$
 it is at (-2.98, 2.87).

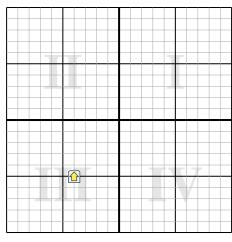
**Answers** 


1. \_\_\_\_\_

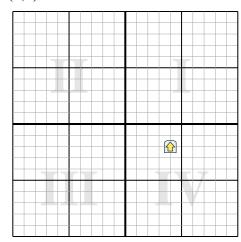
2


3. \_\_\_\_\_

4. \_\_\_\_\_


1) Rotate the shape  $-53^{\circ}$  around the point (0,0).



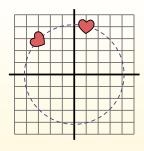

2) Rotate the shape  $235^{\circ}$  around the point (0,0).



3) Rotate the shape  $37^{\circ}$  around the point (0,0).



4) Rotate the shape  $-129^{\circ}$  around the point (0,0).




 $\theta$  = Angle of Rotation

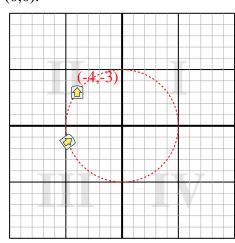
## **Rotation Formula**

$$x1 = x \times \cos(\theta) - y \times \sin(\theta)$$
  
$$y1 = x \times \sin(\theta) + y \times \cos(\theta)$$

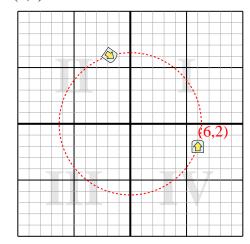
In the example to the right the shape is at coordinates (1,4). Lets find the coordinates if we rotated the shape 60°.



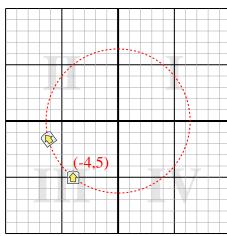
1.  $x1 = 1 \times \cos(60) - 4 \times \sin(60)$  $y1 = 1 \times \sin(60) + 4 \times \cos(60)$ 


Name:

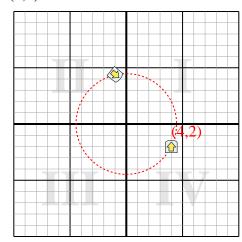
- 2.  $x1 = 1 \times 0.5 4 \times 0.87$  $y1 = 1 \times 0.87 + 4 \times 0.5$
- 3. x1 = 0.5 3.48y1 = 0.87 + 2
- 4. x1 = -2.98y1 = 2.87
- 5. Looking at shape, we can see that rotated  $60^{\circ}$  it is at (-2.98, 2.87).


# **Answers**

- 1. **(-4.8,-1.4)**
- 2. **(-1.8,6.1)**
- 3. **(-6.2,-1.6)**
- 4. **(-1,4.4)**


1) Rotate the shape  $-53^{\circ}$  around the point (0,0).



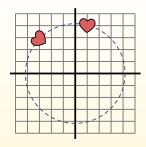

2) Rotate the shape  $235^{\circ}$  around the point (0,0).



3) Rotate the shape  $37^{\circ}$  around the point (0,0).



4) Rotate the shape  $-129^{\circ}$  around the point (0,0).




 $\theta$  = Angle of Rotation

#### **Rotation Formula**

$$x1 = x \times \cos(\theta) - y \times \sin(\theta)$$
  
$$y1 = x \times \sin(\theta) + y \times \cos(\theta)$$

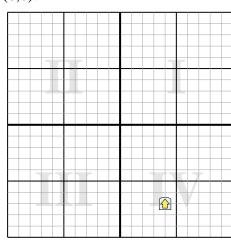
In the example to the right the shape is at coordinates (1,4). Lets find the coordinates if we rotated the shape 60°.



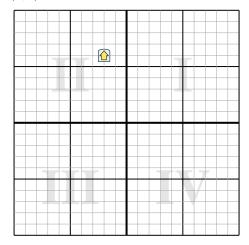
1. 
$$x1 = 1 \times \cos(60) - 4 \times \sin(60)$$
  
 $y1 = 1 \times \sin(60) + 4 \times \cos(60)$ 

2. 
$$x1 = 1 \times 0.5 - 4 \times 0.87$$
  
 $y1 = 1 \times 0.87 + 4 \times 0.5$ 

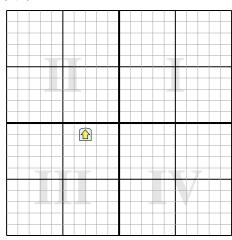
3. 
$$x1 = 0.5 - 3.48$$


$$y1 = 0.87 + 2$$

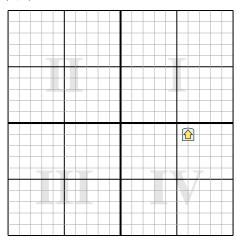
4. 
$$x1 = -2.98$$
  
 $y1 = 2.87$ 


5. Looking at shape, we can see that rotated  $60^{\circ}$  it is at (-2.98, 2.87).

**Answers** 


1) Rotate the shape  $-91^{\circ}$  around the point (0,0).



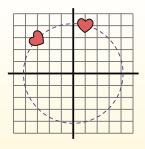

2) Rotate the shape  $-189^{\circ}$  around the point (0,0).



3) Rotate the shape  $-140^{\circ}$  around the point (0,0).



4) Rotate the shape  $202^{\circ}$  around the point (0,0).




 $\theta$  = Angle of Rotation

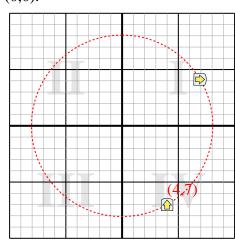
## **Rotation Formula**

$$x1 = x \times \cos(\theta) - y \times \sin(\theta)$$
  
$$y1 = x \times \sin(\theta) + y \times \cos(\theta)$$

In the example to the right the shape is at coordinates (1,4). Lets find the coordinates if we rotated the shape 60°.



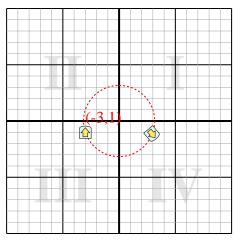
1.  $x1 = 1 \times \cos(60) - 4 \times \sin(60)$  $y1 = 1 \times \sin(60) + 4 \times \cos(60)$ 


Name:

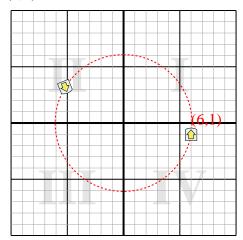
- 2.  $x1 = 1 \times 0.5 - 4 \times 0.87$  $y1 = 1 \times 0.87 + 4 \times 0.5$
- 3. x1 = 0.5 - 3.48y1 = 0.87 + 2
- x1 = -2.98y1 = 2.87
- 5. Looking at shape, we can see that rotated  $60^{\circ}$  it is at (-2.98, 2.87).

**Answers** 

- (6.9,4.1)


Rotate the shape -91° around the point (0,0).




Rotate the shape -189° around the point (0,0).

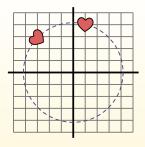


Rotate the shape -140° around the point (0,0).



Rotate the shape 202° around the point (0,0).






 $\theta$  = Angle of Rotation

## **Rotation Formula**

$$x1 = x \times \cos(\theta) - y \times \sin(\theta)$$
  
$$y1 = x \times \sin(\theta) + y \times \cos(\theta)$$

In the example to the right the shape is at coordinates (1,4). Lets find the coordinates if we rotated the shape 60°.



1.  $x1 = 1 \times \cos(60) - 4 \times \sin(60)$ 

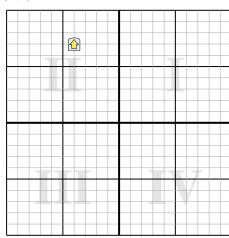
$$y1 = 1 \times \sin(60) + 4 \times \cos(60)$$

2. 
$$x1 = 1 \times 0.5 - 4 \times 0.87$$
  
 $y1 = 1 \times 0.87 + 4 \times 0.5$ 

3. 
$$x1 = 0.5 - 3.48$$

$$y1 = 0.87 + 2$$

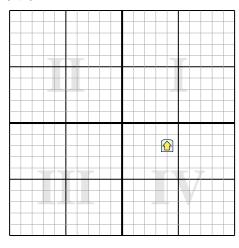
2.87).


4. 
$$x1 = -2.98$$

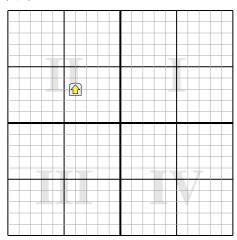
$$y1 = 2.87$$
  
**5.** Looking at shape, we can see that rotated 60° it is at (-2.98,


4. \_\_\_\_\_

**Answers** 


1) Rotate the shape  $91^{\circ}$  around the point (0,0).



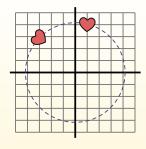

2) Rotate the shape  $-105^{\circ}$  around the point (0,0).



3) Rotate the shape  $248^{\circ}$  around the point (0,0).



4) Rotate the shape  $140^{\circ}$  around the point (0,0).



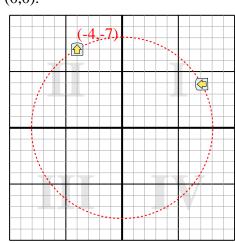

 $\theta$  = Angle of Rotation

## **Rotation Formula**

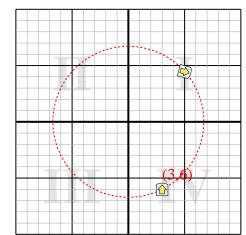
$$x1 = x \times \cos(\theta) - y \times \sin(\theta)$$
  
$$y1 = x \times \sin(\theta) + y \times \cos(\theta)$$

In the example to the right the shape is at coordinates (1,4). Lets find the coordinates if we rotated the shape 60°.

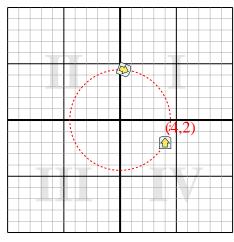



- 1.  $x1 = 1 \times \cos(60) 4 \times \sin(60)$  $y1 = 1 \times \sin(60) + 4 \times \cos(60)$
- 2.  $x1 = 1 \times 0.5 - 4 \times 0.87$  $y1 = 1 \times 0.87 + 4 \times 0.5$
- 3. x1 = 0.5 - 3.48y1 = 0.87 + 2
- x1 = -2.98y1 = 2.87
- 5. Looking at shape, we can see that rotated  $60^{\circ}$  it is at (-2.98, 2.87).

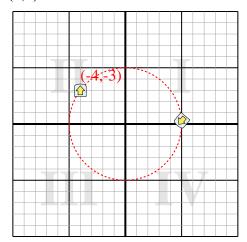
**Answers** 


- (7.1,3.9)

- (5,0.3)


Rotate the shape 91° around the point (0,0).




Rotate the shape -105° around the point (0,0).

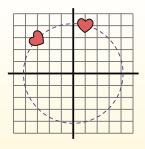


Rotate the shape 248° around the point (0,0).



Rotate the shape 140° around the point (0,0).






 $\theta$  = Angle of Rotation

## **Rotation Formula**

$$x1 = x \times \cos(\theta) - y \times \sin(\theta)$$
  
$$y1 = x \times \sin(\theta) + y \times \cos(\theta)$$

In the example to the right the shape is at coordinates (1,4). Lets find the coordinates if we rotated the shape 60°.



1.  $x1 = 1 \times \cos(60) - 4 \times \sin(60)$ 

$$y1 = 1 \times \sin(60) + 4 \times \cos(60)$$

2. 
$$x1 = 1 \times 0.5 - 4 \times 0.87$$
  
 $y1 = 1 \times 0.87 + 4 \times 0.5$ 

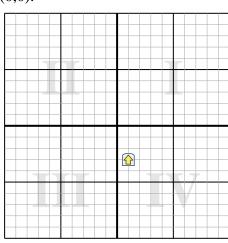
3. 
$$x1 = 0.5 - 3.48$$

$$y1 = 0.87 + 2$$

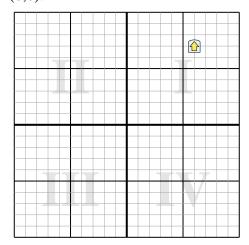
1. 
$$x1 = -2.98$$
  
 $y1 = 2.87$ 

5. Looking at shape, we can see that rotated 60° it is at (-2.98, 2.87).

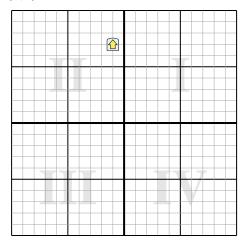



1. \_\_\_\_\_

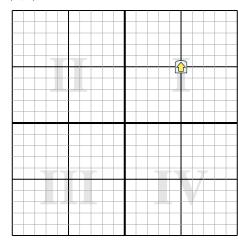
2


3. \_\_\_\_\_

4. \_\_\_\_\_


1) Rotate the shape  $255^{\circ}$  around the point (0,0).



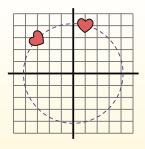

2) Rotate the shape  $95^{\circ}$  around the point (0,0).



3) Rotate the shape  $-55^{\circ}$  around the point (0,0).



4) Rotate the shape  $-34^{\circ}$  around the point (0,0).

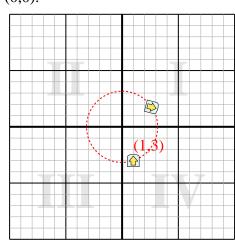



 $\theta$  = Angle of Rotation

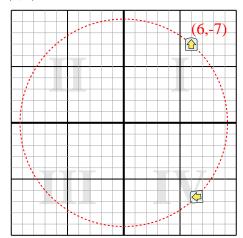
## **Rotation Formula**

$$x1 = x \times \cos(\theta) - y \times \sin(\theta)$$
  
$$y1 = x \times \sin(\theta) + y \times \cos(\theta)$$

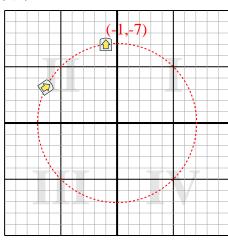
In the example to the right the shape is at coordinates (1,4). Lets find the coordinates if we rotated the shape 60°.



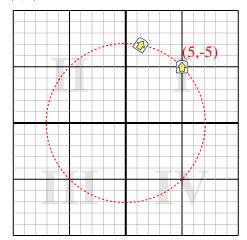

- 1.  $x1 = 1 \times \cos(60) 4 \times \sin(60)$  $y1 = 1 \times \sin(60) + 4 \times \cos(60)$
- 2.  $x1 = 1 \times 0.5 - 4 \times 0.87$  $y1 = 1 \times 0.87 + 4 \times 0.5$
- 3. x1 = 0.5 - 3.48y1 = 0.87 + 2
- x1 = -2.984. y1 = 2.87
- 5. Looking at shape, we can see that rotated  $60^{\circ}$  it is at (-2.98, 2.87).


**Answers** 

- (2.6,1.7)


Rotate the shape 255° around the point (0,0).




Rotate the shape 95° around the point (0,0).



Rotate the shape -55° around the point (0,0).



Rotate the shape -34° around the point (0,0).

